notes hmc
Notes for Hamilton MC
General
- works only on continuous distribution
The Hamilton equation:
\[\begin{align*} \frac{d q_i}{dt} &= \frac{\partial H}{\partial p_i} \\ \frac{dp_i}{dt} &= - \frac{ \partial H}{\partial q_i} \end{align*}\]Property
- reversible: make $K(p) = K(-p)$, then plug in $-p$ for MCMC
- conserved; invariant \(\frac{d H}{dt} = 0\)
Method
Euler
\[\begin{align*} p_i(t + \epsilon) & = p_i(t) = \epsilon \frac{dp_i(t)}{dt} = p_i(t) - \epsilon \frac{\partial U(q_i(t))}{\partial q_i} \\ q_i(t + \epsilon) & = q_i(t) + \epsilon \frac{dq_i(t)}{dt} = q_i(t) + \epsilon \frac{p_i(t)}{m_i} \end{align*}\]Modified Euler
\[\begin{align*} p_i(t + \epsilon) & = p_i(t) - \epsilon \frac{\partial U(q_i(t))}{\partial q_i} \\ q_i(t + \epsilon) & = q_i(t) + \epsilon \frac{p_i(t + \epsilon)}{m_i} \end{align*}\]Leapfrog
\[\begin{align*} p_i(t + \epsilon/2) & = p_i(t) - \epsilon/2 \frac{\partial U(q_i(t))}{\partial q_i} \\ q_i(t + \epsilon) & = q_i(t) + \epsilon \frac{p_i(t + \epsilon/2)}{m_i} \\ p_i(t + \epsilon) & = p_i(t + \epsilon/2) - \epsilon/2 \frac{\partial U(q_i(t + \epsilon))}{\partial q_i} \end{align*}\]Tune
- preliminary runs
- trace plot
stepsize
- too large: very low acceptance
- too small: not efficient
Optimal Acceptance Rate: 0.23
Reference:
MCMC Using Hamiltonian Dynamics by Radford M. Neal
Approximation to compute the trajectory
- Use a subset of data
- few iterations for U
Published
24 December 2013
Modified
liuminzhao 01/13/2014 13:57:41