statcomp notes
Advanced statistical computing Notes
Pre
C: speed
perl: data manipulation
R: analyses and graphics
C
Perl
#!/usr/bin/perl -w
w for warning
chmod +x program.pl
#!/usr/bin/perl -w
print("Hello, world!\n");
more complicated example
open(IN, $mfile)
or die
R
Ch 1 : Intro
Ch 2 : R
Ch 3 : random number generation
#include <R.h>
GetRNGstate();
PutRNGstate();
double unif_rand();
double norm_rand();
double exp_rand();
double r****();
/usr/local/lib/R/include/R.h
/usr/local/lib/R/include/R_ext/Mathlib.h
RHOME/src/main/RNG.c
RHOME/src/nmath/snorm.c
RHOME/src/nmath/sexp.c
Ch 4: permutation test, and bootstrap
Permutation test
Parametric Bootstrap
Nonparametric Bootstrap
Bootstarp in regression
Ch5 : Numerical Linear Algebra
Ch 6: EM
- Standard errors
- Maximizing
- Slow convergence
Ch 7: Newton-Raphson, Fisher Scoring
Ch 8: Numerical Integration
- don’t use
h*f(x)
in reality - Error O(1/N^2)
Gaussian Quadrature
Ch 9 : MCMC
- burn in : drop the first M steps, Gelman, drop the first half
- keep only every kth sample: gelman, keep every sample
- want steps to be big
- don’t want to reject too often
- data augmentation (EM) can be helpful
- reject 44% when p=1, 23% when p>5
Ch 10: Remarks
- against using Fortran
- use C and perl
Published
17 June 2012