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What is Quantile Regression

Suppose random variable Y has cdf F , then the τ -th quantile
of Y is

QY (τ) = inf {y : F (y) ≥ τ} ,

Furthermore, if we have covariates X, then the quantile
regression parameter β satisfies this condition

QY (τ |x) = x ′β(τ),

if F is continues , then

Pr(y ≤ x ′β(τ)) = τ.



Why We Need Quantile Regression

Figure: Engel Curves for Food: This figure plots data taken from
Engel’s (1857) study of the dependence of households’ food
expenditure on household income.



Why (Cont’d)

Advantage over regular mean regression:

I more information provided,

I slope may vary with different τ .



How to Get Estimates (Koenker)

Recall least squared estimator for mean regression model is :

β = arg min
b∈Rp

n∑
i=1

(yi − x ′i b)
2

In quantile regression , we have : The true τ -th quantile
regression parameter β(τ) minimizes the expectation of the
check function:

β(τ) = arg min
b∈Rp

E (ρτ (y − x ′i b)) ,

ρτ (z) = z (τ − I (z < 0)) .

Empirically, we take

β(τ) = arg min
b∈Rp

n∑
i=1

(ρτ (y − x ′i b)) ,



Equivalence of ASL and Check Function (Yu-2001)

Asymmetric Laplace Distribution pdf:

fτ (z ;µ, σ) =
τ(1− τ)

σ
exp

{
−ρτ

(
z − µ
σ

)}
Property:

Fz(µ) = τ

If we assume

y = xβ + ε

ε ∼ ASLτ (0, σ)

then,

L(β, σ|Y) ∝ σ−n exp

{
−

n∑
i=1

ρτ

(
yi − x ′iβ

σ

)}

⇔ β(τ) = arg min
b∈Rp

n∑
i=1

(ρτ (y − x ′i b)) ,



Remarks

I no distribution assigned in check function

I one ALD distribution for all models

I for different τ , separate model needed



Our Proposal

Consider location-shift model

Y = Xβ + ε, ε ∼ Fε

⇒ β(τ) = β + F−1ε (τ)e1
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yi = β0 + β1xi1 + εi .



Heterogeneity

Y = xβ + (xγ)ε, ε ∼ Fε

⇒ β(τ) = β + γF−1ε (τ)
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yi = β0 + β1xi1 + (1 + xi1)εi

Question: How to get F−1ε (τ),



A Flexible Nonparametric Prior: Polya Tree

G |Π,A ∼ PT (Π,A)

PT parameters:

1. Partitions:
Σ = {B0,B1,B00, . . .}

2. Weights
A = {α0, α1, . . . , αε, . . .}

3. Yε0 ∼ Beta(αε0, αε1)
4. αε0 = αε1 = cj2,

absolutely continuous
5. Partial / finite PT , M

level



Why and advantages

1. flexible, nonparametric

2. posterior tractable

x |G ∼ G

G ∼ PT (B ,A)

⇒ G |x ∼ PT (B ,A∗) with α∗ε =

{
αε + 1 if x ∈ Bε

αε otherwise

3. easy to get posterior quantile

4. easy to fix median or other quantiles

5. can be absolute ly continuous , while DP can not



Mixture of Polya Trees

Since the behavior of polya tree prior highly depends on the
partition parameter Π, thus a mixture of Polya tree prior was
defined this way:

x |G ∼ G

G ∼ PT (B ,A)

⇒ G |Πθ,Aθ ∼ PT (Σµ,σ,Ac)

where Σ partition was constructed based on baseline measure
N(µ, σ2). and then assign θ = (µ, σ2, c) a prior.

θ ∼ π(θ)



Predictive Density, Cumulative, and Quantiles

X1, . . . ,Xn|G ∼ G

G |Πσ2

,Ac ∼ PT (Πσ2

,Ac)

where G0 = N(0, σ2) is the baseline measure, and g0(x) is its
density function. Then, from the partial PT, the predictive
density function is

f (x |X1, . . . ,Xn) =

[
M∏
j=2

cj2 + n(ε(j , x)|X)

2cj2 + n(ε(j − 1, x)|X)

]
2M−1g0(x)



Predictive Cumulative, and Quantiles (Cont’d)

Integrating the predictive density function,

F (x |X1, . . . ,Xn) =
N−1∑
i=1

Pi + PN

(
G0(x)2M − (N − 1)

)
Pi =

1

2

M∏
j=2

cj2 + n(ε(j , x)|X)

2cj2 + n(ε(j − 1, x)|X)

N =
[
2MG0(x) + 1

]
By inverting the predictive cumulative density function,

F−1X |X(τ) = G−10

[
τ −

∑N
i=1 Pi + N · PN

2MPN

]

N satisfy
N−1∑
i=1

Pi < τ ≤
N∑
i=1

Pi



Quantile Regression with PT

Suppose we have a location-shift model, with heterogeneity
form:

yi = xiβ + (xiγ)εi

εi |G ∼ G

G |Π, µ, σ,A ∼ PT (Πµ,σ,A)

in order not to confound with location parameter β, we fix ε’s
median as 0 (µ = 0). Also, to deal with the identifiability
problem of γ, the first element of γ is set to be 1.
Estimation:

β(τ) = β + γF−1ε (τ)

p(β(τ)|Y) = p(h(β,γ,F−1ε )|Y)



Simulation and Comparison

Compare our quantile regression model with Polya trees priors
(HeterPTlm) with Koenker’s ’rq’ function in R package
’quantreg’.

I Yi = 1 + xi1 + xi2 + N(0, 1)

I Yi = 1 + xi1 + xi2 + Gamma(3, 1)

I Yi = 1 + xi1 + xi2 + MixtureNormal

I Yi = 1 + xi1 + xi2 + (1− 0.5xi1 + 0.5xi2)MixtureNormal

I Yi = 1 + xi1 + xi2 + (1− 0.5xi1 + 0.5xi2)Gamma(3, 1)

where Mixture Normal ∼ 0.5N(−2, 1) + 0.5N(2, 1).
100 datasets and each dataset contains 100 observations.
Evaluate τ = 0.5 and τ = 0.9.



Results

MSE Coverage
Model rq HeterPTlm rq HeterPTlm
M1.5 1.39(0.13) 1.06(0.12) 0.82 0.93
M2.5 3.31(0.36) 3.18(0.35) 0.89 0.95
M3.5 17.2(1.48) 2.21(0.30) 0.85 0.95
M4.5 95.4(6.69) 9.87(1.09) 0.86 0.95
M5.5 14.3(1.36) 10.0(1.04) 0.89 0.9
M1.9 2.35(0.26) 2.07(0.23) 0.95 0.96
M2.9 15.2(1.51) 13.5(1.61) 0.9 0.89
M3.9 3.68(0.46) 3.94(0.56) 0.93 0.97
M4.9 25.1(2.66) 14.8(1.41) 0.88 0.94
M5.9 73.7(8.48) 60.2(8.14) 0.93 0.87

length of credible interval from HeterPTlm is also shorter than
that from rq function.
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